Based on this reference: http://www.icl.utk.edu/~mgates3/docs/latex-fonts.pdf
Bookman, CM math, Avant Garde, Courier:
\[ [preamble] \usepackage{bookman} [/preamble] f(\bm{x}, z) = \sum_{i=0}^\infty \int_0^\infty \int_{d\Gamma} \alpha \beta \bm{M}^{-1} \bm{A} g(\bm{x}) \sin(z) \;d\Gamma \;d\bm{\Omega}. \]
Palatino, Palatino math, Avant Garde:
\[ [preamble] \usepackage{mathpazo} % Palatino \usepackage{avant} % Avant Garde [/preamble] f(\bm{x}, z) = \sum_{i=0}^\infty \int_0^\infty \int_{d\Gamma} \alpha \beta \bm{M}^{-1} \bm{A} g(\bm{x}) \sin(z) \;d\Gamma \;d\bm{\Omega}. \]
Palatino (smallcaps), Euler math, Helvetica:
\[ [preamble] \usepackage[sc]{mathpazo} % Palatino with smallcaps \usepackage[scaled]{helvet} % Helvetica, scaled 95% \usepackage{eulervm} % Euler math [/preamble] f(\bm{x}, z) = \sum_{i=0}^\infty \int_0^\infty \int_{d\Gamma} \alpha \beta \bm{M}^{-1} \bm{A} g(\bm{x}) \sin(z) \;d\Gamma \;d\bm{\Omega}. \]
Palatino (smallcaps, oldstyle numbers), Palatino math, Helvetica:
\[ [preamble] \usepackage[osf]{mathpazo} % Palatino with smallcaps and oldstyle numbers \usepackage[scaled]{helvet} % Helvetica, scaled 95% [/preamble] f(\bm{x}, z) = \sum_{i=0}^\infty \int_0^\infty \int_{d\Gamma} \alpha \beta \bm{M}^{-1} \bm{A} g(\bm{x}) \sin(z) \;d\Gamma \;d\bm{\Omega}. \]
Times, Times math (bm simulated), Avant Garde:
\[ [preamble] \usepackage{mathptmx} % Times \usepackage{avant} % Avant Garde [/preamble] f(\bm{x}, z) = \sum_{i=0}^\infty \int_0^\infty \int_{d\Gamma} \alpha \beta \bm{M}^{-1} \bm{A} g(\bm{x}) \sin(z) \;d\Gamma \;d\bm{\Omega}. \]
Times, Times math (bm simulated), Helvetica:
\[ [preamble] \usepackage{mathptmx} % Times \usepackage[scaled=0.92]{helvet} % Helvetica, scaled 92% [/preamble] f(\bm{x}, z) = \sum_{i=0}^\infty \int_0^\infty \int_{d\Gamma} \alpha \beta \bm{M}^{-1} \bm{A} g(\bm{x}) \sin(z) \;d\Gamma \;d\bm{\Omega}. \]
Times, Times math (bm hack), Helvetica:
\[ [preamble] \usepackage{mathptmx} % Times \usepackage[scaled=0.92]{helvet} % Helvetica, scaled 92% \renewcommand{\bm}[1]{\text{\textbf{\textit{#1}}}} % hack for bold math [/preamble] f(\bm{x}, z) = \sum_{i=0}^\infty \int_0^\infty \int_{d\Gamma} \alpha \beta \bm{M}^{-1} \bm{A} g(\bm{x}) \sin(z) \;d\Gamma \;d\bm{\Omega}. \]